
KELP-CS
Curriculum

2014-2015

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

ii

Acknowledgements

Project Directors

Diana Franklin, Department of Computer Science, UC-Santa Barbara
Danielle Harlow, Department of Education, UC-Santa Barbara

Development Staff

Hilary Dwyer
Johan Henkens

Charlotte Hill
Ashley Iveland

Alexandria Killian

James Cheng-yuan Hong
Sharon Levy

Timothy Martinez
Iris-Eleni Moridis
Logan Ortega
Kenyon Prater

Jenny So
John Thomason
Rick Waltman

Elementary Teacher Consultants

Larry Kelman
Tracey Schifferns
Janis Spracher

Pilot Test Teachers

Bridget Berg-Gankas

Mary Lou Furrer
Cati Gill

Shauna Hawes
Ashleigh Lemp

Jamie Thompkins
Laurie Thorbjornsen

This project is supported in part by the National Science Foundation Grant #1240985.
Additional support provided by the University of California-Santa Barbara

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

iii

Table of Contents
Introduction ... iv	

KELP-CS: Scope and Sequence .. v	

Module 1: Digital Storytelling .. v	

Module 2: Game Design .. v	

Module 3: Advanced Topics .. v	

Introduction to Computer Science ... vi	

What is Computer Science? ... vi	

Why teach Computer Science? ... vii	

How will your students be learning Computer Science? .. viii	

Introduction to Engineering Design Thinking .. ix	

What is Engineering Design Thinking? .. ix	

How is Engineering Design Thinking related to Computer Science & Programming? x	

How will your students be engaging in Engineering Design Thinking? x	

Using Design Notebooks .. xi	

Why use a Design Notebook? .. xi	

How will your students be using a Design Notebook? ... xi	

Tips for Teachers .. xiii	

Classroom/Computer Lab Configuration .. xiii	

“Fixed” vs. “Growth” Mindset ... xv	

Computer Logistics ... xvi	

LaPlaya Interface Guide .. xviii	

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

iv

Introduction

Welcome to Kids Engaged in Learning Programming (KELP-CS)! KELP-CS is a modular
curriculum for 4th-6th graders created by an interdisciplinary research team at UC
Santa Barbara. Each of our three modules consists of 16 hours of instruction, and can
be used for each grade level. The first module introduces students to block-based
programming and digital storytelling. The second develops these programming skills
further and teaches students about game design. And the third module enhances their
computational thinking with advanced programming topics. Moreover, KELP-CS
emphasizes design thinking, the process by which engineers develop innovative
solutions to problems. Design thinking is a core part of new science standards for K-12
students, the Next Generation Science Standards (NGSS) and involves understanding
the problem, generating ideas, selecting an idea based on multiple constraints, and
improving the idea. We see design thinking overlapping with computer science in ways
that allow students to access each in new and exciting ways!

Each KELP-CS module consists of activities that are completed either in the classroom or
on a computer. During classroom activities, students discuss, collaborate, and engage
with computer science without the computer. These off-computer activities introduce
and reinforce concepts that students need to apply on the computer. On the
computer, students complete small, discrete programming tasks in our interface to
learn about a larger computational thinking idea such as sequential motion, event
driven programming, and user interaction. As students finish these computer activities,
they will transfer these programming skills directly to their design-projects. These design-
projects span each module to provide students opportunities to iteratively revise and
improve their programs.

For our programming environment, we use a block-based programming environment,
called LaPlaya that runs through any Internet browser. The interface is user friendly and
age-appropriate upper elementary school students. Instead of programming by typing
individual lines of codes, students can snap individual command blocks program. As
students progress through our modules, more and more blocks are introduced and at
any time they can use our Sandbox area to explore the entire language.

We believe that increasing the opportunities for elementary school children to learn
computer science is an essential aspect of preparing students for computer science
careers as well as preparing all students to be comfortable and adept with technology.
Our goal is to create a curriculum that any elementary school teacher can implement
with their class during an academic day. We invite you to explore computer science
with us, and help prepare the next generation of computer scientists.

Best wishes

The KELP-CS Design Team

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

v

KELP-CS: Scope and Sequence

Module 1: Digital Storytelling

Module 1 is intended as a 4th, 5th, or 6th grader's first introduction to computational
thinking and programming. Students learn general programming concepts in the
context of a particular language and programming environment (LaPlaya). Some
general concepts are the importance of placing things in order in a program, breaking
down complex tasks into their basic components, and properly associating code with
the events that trigger them, and managing the complexity of several sprites moving at
once. LaPlaya programming concepts they will learn are sequential programming,
event driven programming, costume changes, and scene changes. As students learn
and practice these concepts, they will apply them to their animated story, satisfying
design thinking standards.

Module 2: Game Design

Module 2 is geared towards 5th grade and builds off of module 1. Students learn the
different skills needed to design a game in LaPlaya. Topics include loops, decision
making, variables, and comparing different solutions
Module 3:

Module 3: Advanced Topics

Module 3 is geared towards 6th grade and builds off of module 1 and 2. Topics include
music as numbers, parallelism in every day life, parallel sorting, and breaking down
complex problems

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

vi

Introduction to Computer Science
Overview for Teachers

What is Computer Science?

There is often confusion over the swirl of terms related to computing, technology, and
computer science that can be daunting when trying to make decisions about what
students need to learn related to computer science. Computer science, as defined by
the Computer Science Teachers Association (CSTA) and the Association for Computing
Machinery (ACM), is “An academic discipline that encompasses the study of
computers and algorithmic processes, including their principles, their hardware and
software designs, their applications, and their impact on society”.

Computer science is not just about the use of computers or computer applications, it
also includes the knowledge and skills necessary to build the next generations of
software and hardware tools that the world needs. The national urgency to improve
science, technology, engineering, and mathematics (STEM) education is palpable, as
officials have called for reforms in these areas, but what is not clear to policy makers at
all levels is that computer science is frequently left out of these initiatives. Computer
science drives innovation in all STEM disciplines but it is also a distinct discipline with an
extensive body of knowledge.

Computer science teaching sits on a continuum from basic computing concepts that
can be attained at elementary and middle school levels to deeper knowledge, skills,
and practices more appropriate for secondary school. At the elementary school level
students should be introduced to foundational concepts in computer science by
integrating basic skills in technology with simple ideas about computational and
algorithmic thinking. Learning standards developed by an ACM task force (A Model
Curriculum for K-12 Computer Science: Final Report of the ACM K-12 Task Force
Curriculum committee) include the following for grades three through five that are
included in the KELP-CS curriculum:

• Be comfortable using keyboards and other input and output devices.
• Discuss common uses of technology in daily life and the advantages and

disadvantages those uses provide.
• Use technology tools for individual and collaborative writing, communication,

and publishing activities to create presentations for audiences inside and outside
the classroom.

• Use online resources to participate in collaborative problem-solving activities for
the purpose of developing solutions or products for audiences inside and outside
the classroom.

• Use technology resources for problem-solving, self-directed learning, and
extended learning activities.

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

vii

Why teach Computer Science?

No other subject will open as many doors in the 21st Century, regardless of a student’s
ultimate field of study or occupation, as computer science. At a time when computing
is driving job growth and new scientific discoveries are happening all the time, gaining
a deeper knowledge of computer science and its fundamental aspects is essential not
only to have a clear understanding of “what is going on under the hood” of computer
software or hardware, but also to develop critical thinking skills that will serve a student
throughout his or her career. The U.S. Bureau of Labor Statistics projects that the
computing sector will have 1.5 million job openings over the next 10 years, making this
one of the fastest growing economic fields

The knowledge and skills imparted by computer science also enables innovation and
opens doors. Many fields of science and business depend on computer science.
Despite the incredible diversity of the U.S. workforce, it is clear that most of today’s jobs
depend on some knowledge of, and skills to use computing technologies. It is also clear
that this trend is growing as computing becomes embedded more deeply in everyday
commerce and society. Computing touches everyone’s daily lives; Securing our cyber-
infrastructure, voting in elections, protecting national security, and making our energy
infrastructure more efficient are among numerous issues dependent on computing and
a strong computing-savvy workforce. If K–12 schools are seeking to make students
college- and career-ready, computer science should be part of the core curriculum.

Increasing the opportunities for elementary school children (especially girls and other
underrepresented minority groups) to learn computer science is an essential aspect of
preparing students for computer science careers as well as preparing all students to be
comfortable and adept with technology. Research has shown that students’ career
aspirations at eighth grade are strong predictors of whether they will attend college
and whether they will pursue careers in science or engineering, highlighting the
importance of experiences children have prior to eighth grade. Fortunately, more
children are gaining experiences in computer science at younger ages. Programming
environments designed for children and novices (e.g., Scratch, Alice) are easily
accessible by classroom teachers and coding in K-12 education has become a huge
movement.

What is unclear to many educators is what curriculum will support this growing trend.
Although we are beginning to understand how best to teach computer science at the
high school level and middle school level, we know comparatively little about effective
instruction at the K-5 level. Luckily, some systematic curricula, such as KELP-CS, have
been developed that are targeted at helping elementary school students learn
programming and computer science. This kind of curriculum is based upon the higher
tiers of Bloom’s cognitive taxonomy (involving design, creativity, problem solving,
analyzing possible solutions to a problem, collaboration, and presenting work) and
develops and extends logical thinking and problem-solving skills that can be applied to
real world problems.

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

viii

How will your students be learning Computer Science?

In addition to engaging in the computation thinking and problem-solving aspects of
computer science, students will also be introduced to and gain a foundation in an
important aspect of computer science; programming. Using the modified Scratch
environment, called LaPlaya, to either debug existing programs or create new
programs students will learn important computational thinking and programming skills
including:

• Sequencing
• Breaking down actions
• Event driven programming
• Initialization
• Animation
• Scene changes

Using the KELP-CS curriculum students will also be engaging in many computer science
practices such as precision, optimization, utilizing tools strategically, and switching back
and forth between thinking as a software developer and thinking like a software user.

References

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is not enough: the educational theory
and research foundation of the exploring computer science professional development
model. In Proceedings of the 45th Technical Symposium on Computer Science
Education (SIGCSE ’14). Atlanta, GA: ACM.

Liberman, N., Kolikant, Y., & Beeri, C. (2012). “Regressed experts” as a new state in teachers’

professional development: lessons from computer science teachers’ adjustments to
substantial changes in the curriculum. Computer Science Education, 22(3), 257-283.
doi:10.1080/08993408.2012.721663

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cuniff, D., ... & Verno, A. (2011).

CSTA K-12 Computer Science Standards. CSTA Standards Task Force.

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to
teach K-12 computer science in the digital age. Association for Computing Machinery.
Computer Science Teachers Association.

Zendler, A., & Hubwieser, P. (2013). The influence of (research-based) teacher training programs

on evaluations of central computer science concepts. Teaching & Teacher Education,
34130-142. doi:10.1016/j.tate.2013.03.005

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

ix

Introduction to Engineering Design Thinking
Overview for Teachers

What is Engineering Design Thinking?

Design thinking is the process by which engineers develop innovative solutions to
problems and is now a core idea in new science standards for K-12 students, the Next
Generation Science Standards (NGSS). The process involves understanding the problem,
generating ideas, selecting an idea based on multiple constraints, and improving the
idea. Even before children enter school, they use the process of design thinking to help
them solve problems.

Consider a child who lets go of the string of a helium-filled balloon in her kitchen. The
balloon, now on the kitchen ceiling becomes too high for her to reach, presenting a
problem to solve – How to reach the balloon? She may consider the many resources
available to her right in her kitchen such as chairs and cooking utensils. First, she might
try using a chair to stand on. If the chair is not high enough, she might try to hold a
wooden spoon in her hand to extend her reach while standing on the chair. If she then
notices that she can hit the string, but not grasp it with the spoon, she stands on the
chair holding a set of tongs, a solution that would allow her to reach and grasp the
string. We encounter these sorts of engineering
problems and engage in this sort of problem
solving or design thinking every day.

The Next Generation Science Standards (NGSS)
breaks design thinking into three stages: 1)
Defining and delimiting an Engineering Problem,
2) Developing Possible Solutions, and 3)
Optimizing the Design Solution The table below
describes what students in grades 3-5 should be
able to do to demonstrate understanding of
these three stages.

Define/Delimit
Problem.

Define a simple design problem reflecting a need or a want that includes
specified criteria for success and constraints on materials, time, or cost.

Develop solutions.

Generate and compare multiple possible solutions to a problem based on
how well each is likely to meet the criteria and constraints of the problem.

Optimize design
solution

Plan and carry out fair tests in which variables are controlled and failure
points are considered to identify aspects of a model or prototype that
can be improved.

The first step is to define the problem. An engineering problem includes goals (or criteria
for success) for what should be done (e.g., build a bridge that spans a stream that is 5
meters wide and can support the weight of 5 adults) and constraints (e.g., a specified
budget, limit on materials or time limits). The first step to solving any engineering
problem is to fully understand the problem including the goals and constraints.

De#ine	
 &	
 Delimit	

Engineering	

Problem 	
 	

Develop	

Possible	

Solutions	

Optimize	

Design	

Solution	

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

x

The second step is to develop solutions. This step includes brainstorming or generating
several different ideas and then considering how well each idea is likely to meet the
problem goals and staying within constraints.

The third step is to optimize the solution. Once an engineer has selected a solution, the
next step is to optimize that solution. Optimize means to take an idea and make that
idea as good as possible. In engineering, there is usually not a perfect solution and
multiple factors are involved. Sometimes as one tries to increase optimization along one
factor (e.g., using less material), it may mean decreasing performance along another
(e.g., speed).

How is Engineering Design Thinking related to Computer Science &
Programming?

Engineering Design Thinking is an important part of computer science and
programming. When programmers create a game or an app or any other piece of
software, they engage in design thinking. They consider the problem they are solving
(e.g., how can I make a fun game for 4th graders to learn about math?) and then
develop and optimize their solutions.

How will your students be engaging in Engineering Design Thinking?

In this design thinking activities that complement the programming activities in KELP-CS,
children will be developing their own piece of software (a “Digital Story” in Module 1).
They will learn tools that are useful to computer scientists like storyboards and flow
charts as they develop and optimize their digital stories.

References

National Research Council. (2012). A Framework for K-12 Science Education: Practices,

Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

Achieve (2012). Next Generation Science Standards. Available at

http://www.nextgenscience.org/

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xi

Using Design Notebooks

Why use a Design Notebook?

The idea of using a notebook to organize thoughts and ideas and keep track of work is
not a new idea. Inspiring people throughout history have used notebooks like these to
jot down ideas for books or movies (like Mark Twain and George Lucas), record
observations of nature (as Thomas Jefferson and Charles Darwin did), keep track of
business (like John D. Rockefeller), or flesh out scientific and engineering ideas and
designs (as Isaac Newton and Thomas Edison did). Creating a design notebook is now
a common practice in engineering, the sciences, and product design. This is a place
where individuals or collectives can throw ideas out, incubate them, come back to
them, and most importantly, develop them to fruition.

Thomas Edison’s Design Notebook with initial sketches of the incandescent bulb.
Photos courtesy of Edison.rutgets.edu

How will your students be using a Design Notebook?

If you chose to have your students utilize a design notebook throughout the KELP-CS
curriculum, students will be using either a composition notebook or spiral bound
notebook to keep all of their worksheets, notes, and designs together for the “Design
Thinking” project that they will be working on throughout each module.

This design notebook should include a title page with information such as student login
information (usernames/passwords) and may include a table of contents (if you are
planning on going through their design notebooks this is a good way to navigate them
more easily).

Throughout the design thinking lessons students will have worksheets that they can cut
and paste into the pages of their design notebooks and can then take notes on the

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xii

subsequent pages, ensuring that everything is in order and easy to find. Once students
begin programming using LaPlaya they will be keeping notes on what they did on the
computer, what did/didn’t work, and what they changed in their program. They will
also be creating basic flowcharts for their program (an essential software development
skill and a required course in undergraduate computer science) and will be adding to
them as they learn new, complex commands and adapt their digital stories.

A design notebook is ideal for the KELP-CS curriculum because students will be going
back and forth between online and offline activities and will not always be working on
their Design Thinking project (especially when you consider that they may not even
work on this curriculum each day) so by having everything in one place that is easily
accessible and in order students can more easily get back into the proper mindset to
work on their project and can easily reference previous material if they desire.

The scope of how your students use design notebooks and engage in the design
thinking activities is entirely up to the individual teacher and depends on the individual
class. You may consider expanding on some of these lessons to incorporate more
writing on or off the computer that would allow you to cover multiple standards at once
(Common Core Writing as well as Next Generation Science Standards Engineering
Design Thinking). You may also want to include more collaboration in these lessons and
have students share their work with each other and can write feedback and
suggestions in the margins or on the back of the page. This may also be a valuable tool
for you to provide feedback to your students or should you choose to evaluate their
work.

References

McKay, B., & McKay, K. (2014, January 1). The Pocket Notebooks of 20 Famous Men. Retrieved

July 30, 2014.

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xiii

Tips for Teachers

With the help of our pilot teachers and teacher consultants we have compiled a list of
tips to assist with common issues that take place in the context of teaching a computer
science curriculum in the elementary school classroom such as KELP-CS. We discuss
common issues that arise based on the configuration of the learning environment, the
mindset of teachers and their students, the grouping of students, and the logistics of
working on the computer as well as tips that may help with these issues should they arise
in your classroom.

Classroom/Computer Lab Configuration

There are some basic configurations that many classrooms and computer labs fall into
and with each configuration comes certain challenges to teaching. Below we will go
through some of the possible configurations and common issues that teachers may run
into while teaching the KELP-CS curriculum in each.

Around the Perimeter:

Potential Problems-

When all students face the walls when they are
working on their computer it may be difficult for
the teacher to get their complete attention
when giving instructions are the center of the
classroom.

Possible Solutions-

You might consider an easy solution; have the
students turn their chairs all the way around to face the center of the room or
have the students get up and sit on the floor at the center of the room. Another
idea to get students to stop working on the computer and get their attention is
to have them put their hands in the air (a big computer stretch) and then turn to
the center.

Rows:

Potential Problems-

Because the teacher is usually at the front of
the room and cannot see the students
computer screens it is difficult to ensure that
students are paying attention to the teacher
and not distracted with their computer.

Possible Solutions-
There are several potential solutions for this

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xiv

configuration including having the teacher give directions at the back of the
room and having students turn around (like in the “around the perimeter”
configuration). You can also ensure that students’ screens don’t distract them by
having them turn the monitor sideways (if possible), having them turn the monitor
off (which shouldn’t affect their work only turns off the display), or use a simple
piece of paper (shown below) to cover the screen when needed and can be
flipped up when students are working on the computer. A piece of paper taped to
the top of the computer screen is a great way to ensure that when you’re talking
students cannot look at their computers. And you can easily see if any student doesn’t
have their screen covered because it flips to the back where you can see it from the
front of the room.

Groups:
Potential Problems-

Like in the “rows” configuration, it is difficult
for the teacher to see all students’ computer
screens at one time and students may be
distracted when they should be listen to
directions. Another potential problem that
may arise is that students will work together
more frequently (which is a good thing), but
some students may feel less comfortable
working with some other students and may
take a back seat and let another students do
all the work.

Possible Solutions-
If using personal computers, only allow students to have their computers on their
desk when they will be using them. You may even ask students to shut their
computers or put them away all together if the class is having difficulty paying
attention to instructions. To help with group work you may want to circulate
around the room while students are working on the computer and make sure no
students is being left out. You may also consider setting some guidelines for

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xv

students ensuring that all students work on their own computer and must
complete their own work unless explicitly stated they work in groups.

Individual Desks:

Potential Problems-

Sometimes students get antsy and move around a lot in their desk. If they are
using a personal computer at their individual desk and it is not stable there is a
chance that the computer could fall off their desk (which may damage or break
it).

Possible Solutions-

You can just warn students about moving their desk too much because the
computer might fall or you may consider using a different classroom
configuration with multiple desks put together, which would stabilize them and
prevent the desks from moving around much.

“Fixed” vs. “Growth” Mindset

Research has shown that there is a continuum of beliefs about where success comes
from. The ends of this continuum are called “Fixed Mindset” and “Growth Mindset.”
Students with a fixed mindset believe that success comes from innate abilities, while
those with a growth mindset believe that success comes from hard work and training.
Students with a fixed mindset are likely to fear failure and are less likely to try things that
they do not already know they will be successful with. In contrast, students with a
growth mindset are likely to continue to work at tasks that they find challenging.

Fixed Mindset

Growth Mindset

• Intelligence is innate and does
not change

• Intelligence can be developed

• Desires to look smart • Desires to learn more
• Avoids challenges • Embraces challenges
• Gives up easily when faced with

obstacles
• Worse performance

• Persists when faced with
obstacles

• Better performance

Students are likely to come into computer science activities with a wide range of
experiences. Students with fixed mindsets may see other students (who have more
experience) being successful and determine that they are “not good at computer
programming.” It is important to encourage a growth mindset and remind students that,
through experience, they will get better.

Encouraging your students to have a growth mindset
Praise effort, “I see you worked really hard on that task”
Help students see that there are things they can learn even when they are unsuccessful.

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xvi

For more information, watch the video
https://www.youtube.com/watch?v=xs9fddMg71o

Reference: Dweck, C., (2006). Mindset: The new psychology of success. Random House:
New York.

Computer Logistics

Navigating the Internet

Students often struggle with typing in web addresses because of their limited typing skills
and their lack of attention to detail. Many students would add spaces or extra
punctuation to a web address, which resulted in an error message and much frustration
and chaos in the classroom.

To help remedy this situation you can write the web address on the board in LARGE,
clear print (You can even write it in all CAPS because you will navigate to the same
page regardless of if the address is upper- or lower-case) and emphasize that there are
NO spaces in web addresses.

This is also a good time to implement a system for what students should do if they have
questions (if you have not already established this in your classroom) because this
process usually results in multiple students having difficulty and since there is usually only
one teacher students will have to wait before continuing on with the lesson.

Logging In to LaPlaya

Student Login-

Students should save their login username and password (you can have them write it
inside their design notebook or somewhere else easily accessible). You may also want
the students to bookmark the web address in their browser (Safari, Firefox, Google
Chrome, etc.) so they can easily come back to the website without having to type the
address in each time.

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xvii

Once you get to the website you will
see the LaPlaya interface in the
background (top picture to the left).
Students will click on the blue “Sign In”
button to sign in to their account.

This will take you to a sign in page
(middle picture to the left)where
students will select their school from the
dropbown menu (shown on the
bottom picture to the left) and then
select their class and login name
(which will be assigned to them).

Students will also be given a password
that they will need to type in. Their
password should not be too difficult,
but this is a good time to begin talking
about how computer need you to give
precise instructions and that it is
important to type exactly what they
are supposed to or the computer will
not recognize it.

Teacher Login-

To sign in to a teacher account you will go to
the same web address and click on the blue
“sign in” button, but once you reach the log
in page you will click on the blue writing at
the bottom of the page that says, “Not a
student? Click here.” This will redirect you to
the staff sign in page (shown to the right),
where you will enter you email and password.
Once signed in you have access to the
curriculum, LaPlaya, and information about
your class(es).

 KELP-CS
 UC Santa Barbara
 2014

Welcome to KELP-CS

xviii LaPlaya Interface Guide

